Scuola Superiore Sant’Anna

Qetis

Real-Time Systems Laboratory

Laurea Specialistica in Ingegneria
delllAutomazione — A.A. 2006-2007

Sistemi in Tempo Reale

Giuseppe Lipari

Introduzione alla concorrenza - |

Processes

Process

« The fundamental concept in any operating system is
the “process”
— A process is an executing program

— An OS can execute many processes at the same time
(concurrency)

— Example: running a Text Editor and a Web Browser at the
same time in the PC
« Processes have separate memory spaces
— Each process is assigned a private memory space

— One process is not allowed to read or write in the memory
space of another process

— If a process tries to access a memory location not in its
space, an exception is raised (Segmentation fault), and the
process is terminated

— Two processes cannot directly share variables

Process Control Block

« It contains all the data concerning one
process

« All PCBs are stored in the Process Table

PID

PPID

UID
Page table
File Table

Handles
State

Statistics

Process Table

The role of PCB

 Virtually every routine in the OS will access the PCBs
— The scheduler
— The Virtual memory
— The Virtual File System
— Interrupt handlers (1/O devices)

« It can only be accessed by the OS!

« The user can access some of the information in the
PCB by using appropriate system calls

« The PCB is a critical point of any OS!

Memory layout of a Process

Dynamically allocated
memory
(variable size)
Stack
(variable size) I
Global variables
(non initialized) I
Global variables
(initialized) I
Contains the process code
(machine code) I

Memory protection

« Every process has its own memory space
— Part of it is “private to the process”
— Part of it can be shared with other processes

— For examples: two processes that are instances of the
same program will probably share the TEXT part

— If two processes want to communicate by shared memory,
they can share a portion of the data segment

Other data Other data
Heap Heap
Stack Stack

BSS «
Initialized Data Initialized Data
Text -~

Memory Protection

« By default, two processes cannot
share their memory

— If one process tries to access a
memory location outside its space, a
processor exception is raised (trap)
and the process is terminated

— The famous “Segmentation Fault”

error!!
Any reference to this
memory results in a
segmentation fault

Processes and Threads

Processes

« We can distinguish two aspects in a process

« Resource Ownership

— A process includes a virtual address space, a process
Image (code + data)

— It is allocated a set of resources, like file descriptors, 1/0
channels, etc
« Scheduling/Execution

— The execution of a process follows an ececution path, and
generates a trace (sequence of internal states)

— It has a state (ready, Running, etc.)

— And scheduling parameters (priority, time left in the round,
etc.)

Multi-threading

« Many OS separate these aspects, by
providing the concept of thread

« The process is the “resource owner”

« The thread is the “scheduling entity”
— One process can consists of one or more threads
— Threads are sometime called (improperly)
lightweight processes

— Therefore, on process can have many different
(and concurrent) traces of execution!

Single threaded Process Model

» In the single-threaded
process model one process

has only one thread Single-Threaded
Process Model

— One address space

— One stack tonire (B sac

— One PCB only "'“‘"‘ ==
User Kernel
address stack
space

Multi-threaded process model

e |n the multi-threaded
process model each —
process can have Process Mode

many threads =R
— One address space b e =
— One PCB procs [l Uor {80 e [e |
— Many stacks Bl il e "*
— Many TCB (Thread -~ W BN BN

Control blocks) o [e [e [|

— The threads are
scheduled directly by ==
the global scheduler

Threads

« Generally, processes do not share memory

— To communicate between process, it Is hecessary
to user OS primitives

— Process switch is more complex because we have
to change address space
« Two threads in the same process share the
same address space
— They can access the same variables in memory
— Communication between threads is simpler
— Thread switch has less overhead

Processes vs. Threads

« Processes are mainly used to compete for some

resource

— For example, two different users run two separate
applications that need to print a file

— The printer is a shared resource, the two processes
compete for the printer
« Threads are mainly used to collaborate to some goal

— For example, one complex calculation can be split in two
parallel phases, each thread does one phase

— In a multi-processor machine the two threads go in parallel
and the calculation becomes faster

Example - |

= Consider a Word Processor application
= Main cycle

1. Wait for input from the keyboard

2. Update the document

3. Format the document

4. Check for syntax errors

5. Check for other events (i.e. temporary save)

6. Returnto 1
= One single process would be a waste of time!
L, Ul } 3. format 5.evOet:tesr

2\. update \

4. syntax X 1. wait \

Example - I

« Problems

— Most of the time, the program waits for input
 |dea, while waiting we could perform some other task

— Activities 3 and 4 (formatting and syntax checking) are very
time consuming
 |dea: let’'s do them while waiting for input
 Solution with multiple processes
— One process waits for input
— Another process periodically formats the document
— A third process periodically performs a syntax checking
— A fourth process visualize the document

Graphic

Input Format Syntax

Process Process Process Process

Example - Il

« Problem with multiple processes

— All processes needs to access the same data
structure, the document

— Which process holds the data structure?

— Solution 1: message passing

A dedicated process holds the data, all the others
communicate with it to read/update the data

 Very inefficient!

Input Format
Process Process

Syntax
Process

v

Graphic
Process

Data
Server

Example - IV

« Another solution...

— Solution 2: shared memory

« One process holds the data and makes that part of its
memory shareable with the others

— Still not very efficient:
« We have a lot of process switches
« Memory handling becomes very complex

Why using threads

« Speed of creation

— Creating a thread takes far less time than creating a
process

« Speed of switching
— Thread switch is faster than process switch
e Shared memory

— Threads of the same process run in the same memory
space

— They can naturally access the same data!

a

N

Input Format Syntax Graphic
Thread Thread Thread Thread

Process Document

< 4

Threads support in OS

 Different OS implement threads in different ways

— Some OS supports directly only processes

« Threads are implemented as “special processes”
— Some OS supports only threads

« Processes are threads’ groups
— Some OS natively supports both concepts

« For example Windows NT

« In Real-Time Operating Systems

— Depending on the size and type of system we can have
both threads and processes or only threads
— For efficiency reasons, most RTOS only support
e 1 process
« Many threads inside the process
 All threads share the same memory

— Examples are RTAI, RT-Linux, Shark, some version of
VxWorks, QNX, etc.

Summary

« Important concepts
— Process: provides the abstraction of memory space
— Threads: provide the abstraction of execution trace
— The scheduler manages threads!

« Processes do not normally share memory
« Two threads of the same process share memory

« We need to explore all the different ways in which
two threads can communicate

— Shared memory

— Message passing

In the next section we will only refer to threads

Scheduling and context switch

The thread control block

« In a OS that supports threads
— Each thread is assigned a TCB (Thread Control Block)
— The PCB holds mainly information about memory

— The TCB holds information about the state of the thread
> TID

Thread Table PID
CR

IP
SP
Other Reg.
State
Priority
Time left

Thread states

« The OS can execute many threads at the same time

« Each thread, during its lifetime can be in one of the
following states
— Starting (the thread is being created)
— Ready (the thread is ready to be executed)
— Executing (the thread is executing)
— Blocked (the thread is waiting on a condition)
— Terminating (the thread is about to terminate)

Thread states

a) Creation The thread is created
b) Dispatch The thread is selected to execute
c) Preemption The thread leaves the processor
d) Wait on condition The thread is blocked on a condition
e) Condition true The thread is unblocked
fy Exit The thread terminates
b

Blocke
d

Thread queues

« Single processor

Ready queue
Admit Dispatch

’QPU

Preemption

Blocked queue

Event occurs Wait condition

Admit

Multiple blocking queues

Ready queue

Preemption

A

Event occurs

A

Event occurs

Wait condition 1

Event occurs

Wait condition 2

>
«
d
l
o
l

Wait condition 3

Modes of operation (revised)

« Every modern processor supports at least 2 modes
of operation
— User
— Supervisor
— The Control Register (CR) contains one bit that tells us in
which mode the processor is running
« QOperating system routines run in supervisor mode

— They need to operate freely on every part of the hardware
with no restriction

— User code runs into user mode
« Mode swiich

— Every time we go from user to supervisor mode or
viceversa

Mode switch

It can happen in one of the following cases

— Interrupts or traps

« In this case, before calling the interrupt handler, the processor goes
in supervisor mode and disables interrupts

« Traps are interrupts that are raised when a critical error occurs (for
example, division by zero, or page fault)

« Returning from the interrupt restores the previous mode
— Invoking a special instruction

 In the Intel family, it is the INT instruction

« This instruction is similar to an interrupt

|t takes a number that identifies a “service”

« All OS calls are invoked by calling INT
« Returning from the handler restores the previous mode

Example of system call

int fd,n;
char buff[100];

fd = open(*Dummy.txt”, O_RDONLY);
n = read(fd, buff, 100);

« The “open” system call
can potentially block the
thread!

« |n that case we have a
“context switch”

Context switch

It happens when

— The thread has been “preempted” by another higher priority
thread

— The thread blocks on some condition
— In time-sharing systems, the thread has completed its
“round” and it is the turn of some other thread
« We must be able to restore the thread later

— Therefore we must save its state before switching to
another thread

The “exec” pointer

« Every OS has one pointer (“exec”) to the
TCB of the running thread
— The status of the “exec” thread is RUNNING

« When a context switch occurs,

— The status of the “exec” thread is changed to
BLOCKING or READY

— The scheduler is called

— The scheduler selects another “exec” from the
ready queue

System call with context switch

« Saves parameters on stack
« INT 20h

— Change to supervisor mode
— Save context in the TCB of “exec” (including SP)
— Execute the code
« The thread change status and goes into BLOCKING mode

— Calls the scheduler
« Moves “exec” into the blocking queue
« Selects another thread to go into RUNNING mode
« Now exec points to the new process

— Restores the context of “exec” (including SP)
« This changes the stack

— IRET

« Returns to where the new thread was interrupted

Stacks

Blocking

Stack

TCB

TID

PID

CR

IP

SP

Other Reg.

IP

State

CR

Priority

Time left

Param.

exec

Stack

TCB

TID

PID

CR

IP

SP

Other Reg.

State

Priority

Time left

Context switch

« This is only an example
— Every OS has little variations on the same theme

— For example, in most cases, registers are saved
on the stack, not on the TCB

« You can try to look into some real OS
— Linux
— Free BSD
— Shark (http://shark.sssup.it)

— Every OS is different!

http://shark.sssup.it/

Time sharing systems

 In time sharing systems,
— Every thread can execute for maximum one round
« For example, 10msec

— At the end of the round, the processor is given to
another thread

Ready queue Context

| Switch
1@

| O

interrupt

Interrupt with context switch

e Itis very similar to the INT with context
switch
— An interrupt arrives
— Change to supervisor mode
— Save CR and IP
— Save processor context
— Execute the interrupt handler

— Call the scheduler
« This may change the “exec” pointer

— IRET

Causes for a context switch

o A context switch can be

— Voluntary: the thread calls a blocking primitive, i.e.
it executes an INT
« For example, by calling a read() on a blocking device

— Non-voluntary: an interrupt arrives that causes the
context switch
« It can be the timer interrupt , in time-sharing systems

« |t can be an I/O device which unblocks a blocked
process with a higher priority

« Context switch and mode switch
— Every context switch implies a mode switch
— Not every mode switch implies a context switch

Considerate il seguente task

Esercizio

void *threadA(void *arg)

{

inti;
double s = *((double *) arg);
double vect[3];
for (i=0; i<3; i++) vect[i] = 0;
while (1) {
multiply(vect);
if (length(vect) >s)
normalize(vect);
task _endcycle();

lpotesi di lavoro

- processore a 32 bit
- Int =4 bytes

- Double = 8 bytes

- Char =1 byte

double mat[3][3];

void multiply(double v[])
{
inti,);
double ris[3];
for(i=0; i<3; i++) {
ris[i] = O;
for (j=0; j<3; j++) ris[i] += mat[i][j] * v{i];
Y
for (i=0; i<3; i++) V[i] = ris]il;
return;

}

double length(double v[])

{
return sqrt(v[0]*v[0] + v[1]*v[1] + V[2]*V[2]);

void normalize(double V[])
{
int i;
double | = length(v);
for (i=0; i<3; i++) V[i] /= ;
return;

}

Esercizio

« Domande:

— Disegnare la struttura dello stack e calcolare la sua
dimensione in byte

— Descrivere cosa succede quando arriva una
interruzione

— In un sistema time sharing, descrivere cosa succede
quando il quanto di esecuzione del thread é terminato

